Competing for enhancers: PVT1 fine-tunes MYC expression
نویسندگان
چکیده
منابع مشابه
miR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth.
The synergism between c-MYC and miR-17-19b, a truncated version of the miR-17-92 cluster, is well-documented during tumor initiation. However, little is known about miR-17-19b function in established cancers. Here we investigate the role of miR-17-19b in c-MYC-driven lymphomas by integrating SILAC-based quantitative proteomics, transcriptomics and 3' untranslated region (UTR) analysis upon miR-...
متن کاملThe PVT1-MYC duet in cancer
Gain of 8q24, harboring the avian myelocytomatosis viral oncogene homolog (MYC), is a frequent mutation in cancers. Although MYC is the usual suspect in these cancers, the role of other co-gained loci remains mostly unknown. We have recently found that MYC partners with the adjacent long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1), which stabilizes MYC protein and potent...
متن کاملMetabolism Fine-tunes Macrophage Activation
C ells continually monitor the availability of nutrients and alter their activities and metabolism accordingly. Immune cells are no exception (O’Neill and Pearce, 2015). Macrophages are important immune cells that perform many roles – they are, for example, involved in development and wound repair – but they need to be activated before they can carry out their functions. For years it was though...
متن کاملHypothermia Promotes Interleukin-22 Expression and Fine-Tunes Its Biological Activity
Disturbed homeostasis as a result of tissue stress can provoke leukocyte responses enabling recovery. Since mild hypothermia displays specific clinically relevant tissue-protective properties and interleukin (IL)-22 promotes healing at host/environment interfaces, effects of lowered ambient temperature on IL-22 were studied. We demonstrate that a 5-h exposure of endotoxemic mice to 4°C reduces ...
متن کاملA voltage-dependent chloride channel fine-tunes photosynthesis in plants
In natural habitats, plants frequently experience rapid changes in the intensity of sunlight. To cope with these changes and maximize growth, plants adjust photosynthetic light utilization in electron transport and photoprotective mechanisms. This involves a proton motive force (PMF) across the thylakoid membrane, postulated to be affected by unknown anion (Cl(-)) channels. Here we report that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell Research
سال: 2018
ISSN: 1001-0602,1748-7838
DOI: 10.1038/s41422-018-0064-0